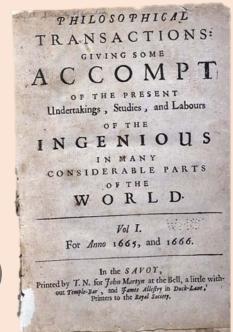
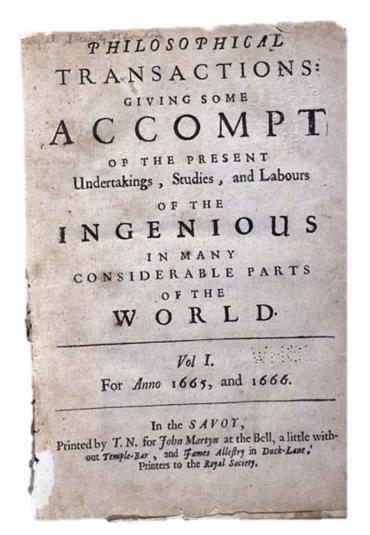
Evolution of Open Access in High-Energy Physics

from green to gold... ...to SCOAP³

> Ankara, 19th October 2015 Alexander Kohls, CERN




Mid 17th century New York has 1,000 inhabitants

Louis XIV. is King of France

First scientific Journal (1665)

	Physics Letters 3 716 (2012) 1-29	
	Contents lists evailable at SciVerse ScienceDirect	Territory and the second
	Physics Letters B	
ELSEVIER	www.elsevier.com/locate/physletb	

Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC *

ATLAS Collaboration*

調約

This paper is dedicated to the memory of our ATLAS colleagues who did not live to see the full impact and significance of their contributions to the experiment

ABSTRACT

ARTICLE INFO

Article history: Received 31 July 2012 Received in revised form 8 August 2012 Accepted 11 August 2012 Available online 14 August 2012 Eritter: W.-D. Schlatter

A search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector a the LHC is presented. The datasets used correspond to integrated luminosities of approximately 4.8 fb collected at $\sqrt{s} = 7$ TeV in 2011 and 5.8 fb⁻¹ at $\sqrt{s} = 8$ TeV in 2012. Individual searches in the channels $H \rightarrow ZZ^{(n)} \rightarrow 4\ell$, $H \rightarrow \gamma\gamma$ and $H \rightarrow WW^{(n)} \rightarrow ev_{\mu\nu}$ in the 8 TeV data are combined with previously published results of searches for $H \rightarrow ZZ^{(n)}$, $WW^{(n)}$, bb and $\tau^+\tau^-$ in the 7 TeV data and results from improved analyses of the $H \rightarrow ZZ^{(n)} \rightarrow 44$ and $H \rightarrow yy'$ channels in the 7 TeV data. Clear evidence for the production of a neural boson with a messature mass of 126.0-14.0 (star) FeV deta(sy) GeV is presented. This observation, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10^{-9} , is compatible with the production and decay of the Standard Model Higgs boson.

© 2012 CERN, Published by Elsevier B.V. All rights reserved.

1. Introduction

The Standard Model (SM) of particle physics [1-4] has been tested by many experiments over the last four decades and has been shown to successfully describe high energy particle interactions. However, the mechanism that breaks electroweak symmetry in the SM has not been verified experimentally. This mechanism [5-10], which gives mass to massive elementary particles, implies the existence of a scalar particle, the SM Higgs boson. The search for the Higgs boson, the only elementary particle in the SM that has not yet been observed, is one of the highlights of the Large Hadron Collider [111] (LHC) physics programme.

Indirect limits on the SM Higgs boson mass of m_H < 158 GeV at 95% confidence level (CL) have been set using global fits to precision electroweak results [12]. Direct searches at LEP [13], the Tevatron [14-16] and the LHC [17,18] have previously excluded, at 95% CL, a SM Higgs boson with mass below 600 GeV, apart from some mass regions between 116 GeV and 127 GeV.

Both the ATLAS and CMS Collaborations reported excesses of events in their 2011 datasets of proton-proton (pp) collisions at centre-of-mass energy $\sqrt{s} = 7$ TeV at the LHC, which were compatible with SM Higgs boson production and decay in the mass region 124-126 GeV, with significances of 2.9 and 3.1 standard deviations (σ), respectively [17,18]. The CDF and DØ experiments at the Tevatron have also recently reported a broad excess in the mass region

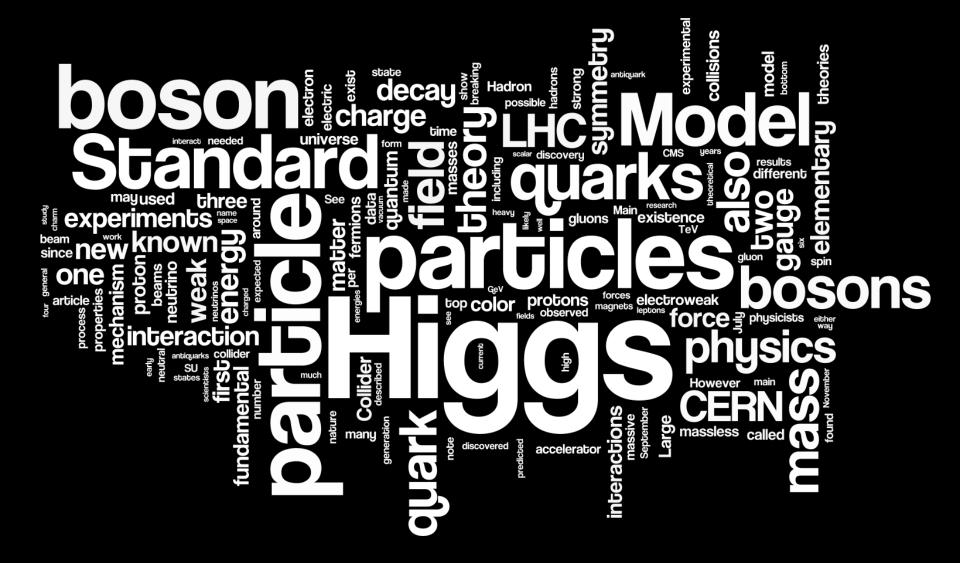
* © CERN for the benefit of the ATLAS Collaboration.

* E-mail address: atlas reddications/form.ch

0370-2693/ © 2012 CERN. Published by Elsevier B.V. All rights reserved. http://dx.doi.org/1010/16/Lphysleth.2012.08.020

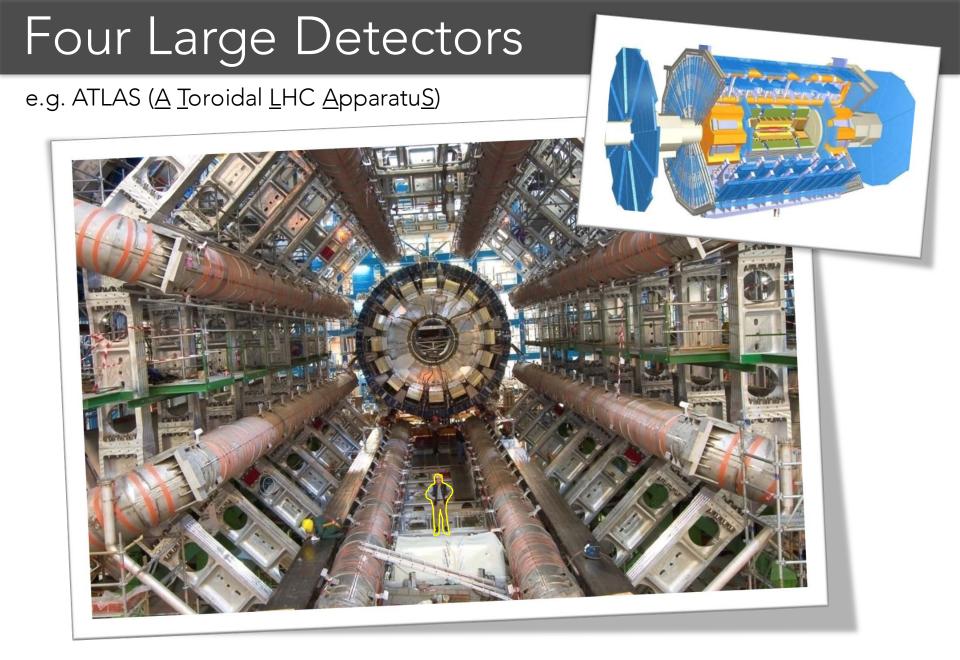
120-135 GeV: using the existing LHC constraints, the observed local significances for $m_{\rm H} = 125$ GeV are 2.7 σ for CDF [14], 1.1 σ for DØ [15] and 2.8 σ for their combination [16]

The previous ATLAS searches in 4.6-4.8 fb⁻¹ of data at \sqrt{s} = 7 TeV are combined here with new searches for $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$, $H \rightarrow \gamma \gamma$ and $H \rightarrow W W^{(*)} \rightarrow e \nu \mu \nu$ in the 5.8-5.9 fb⁻¹ of pp collision data taken at $\sqrt{s} = 8$ TeV between April and June 2012.

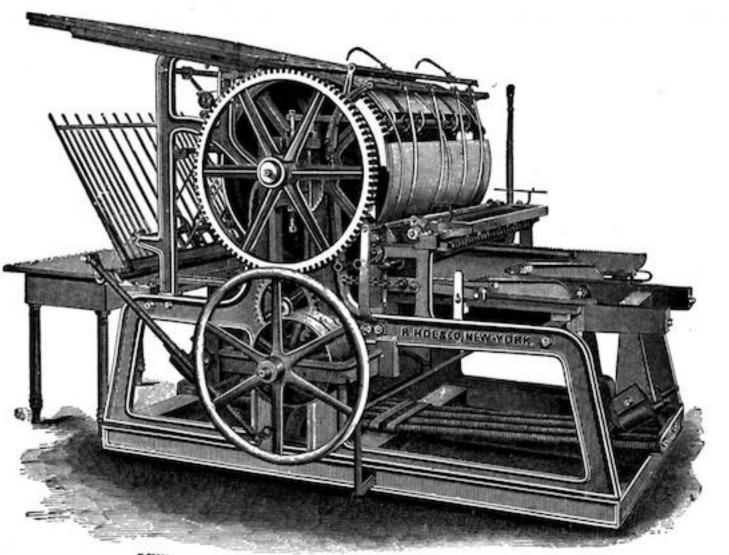

The data were recorded with instantaneous luminosities up to 6.8×10^{33} cm⁻²s⁻¹; they are therefore affected by multiple pp collisions occurring in the same or neighbouring bunch crossings (pile-up). In the 7 TeV data, the average number of interactions per bunch crossing was approximately 10; the average increased to approximately 20 in the 8 TeV data. The reconstruction, identification and isolation criteria used for electrons and photons in the 8 TeV data are improved, making the $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ searches more robust against the increased pile-up. These analyses were re-optimised with simulation and frozen before looking at the 8 TeV data.

In the $H \to WW^{(*)} \to \ell \nu \ell \nu$ channel, the increased pile-up deteriorates the event missing transverse momentum, ET, resolution, which results in significantly larger Drell-Yan background in the same-flavour final states. Since the eu channel provides most of the sensitivity of the search, only this final state is used in the analysis of the 8 TeV data. The kinematic region in which a SM Higgs boson with a mass between 110 GeV and 140 GeV is

¹ The symbol I stunds for electron or much


Scientific journals: dissemination and attribution (unchanged for 350 years)

HEP – High Energy Physics (crawling Wikipedia)


- Super cold! (1.9°K = -271°C)
- Super hot! (100,000x the sun)
- Super vacuum! (10x the moon)
- Super big! (27 km ring)
- Super fast! (99.99999991% light)

CERNs Large Hadron Collider


100 million "sensors", 40 million pictures/second

More than 125PB(=125'000TB) on tape at CERN

W. MODERTZ OF MY

Theories & experimental results are published

Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC *

CMS Collaboration *

CERN, Switzerland

This paper is dedicated to the memory of our colleagues who worked on CMS but have since passed away. In recognition of their many contributions to the achievement of this observation.

ARTICLE INFO

ABSTRACT

Article history: Received in revised form 9 August 2012 Received in revised form 9 August 2012 Accepted 11 August 2012 Available online 18 August 2012 Editor; W-D, Schlatter

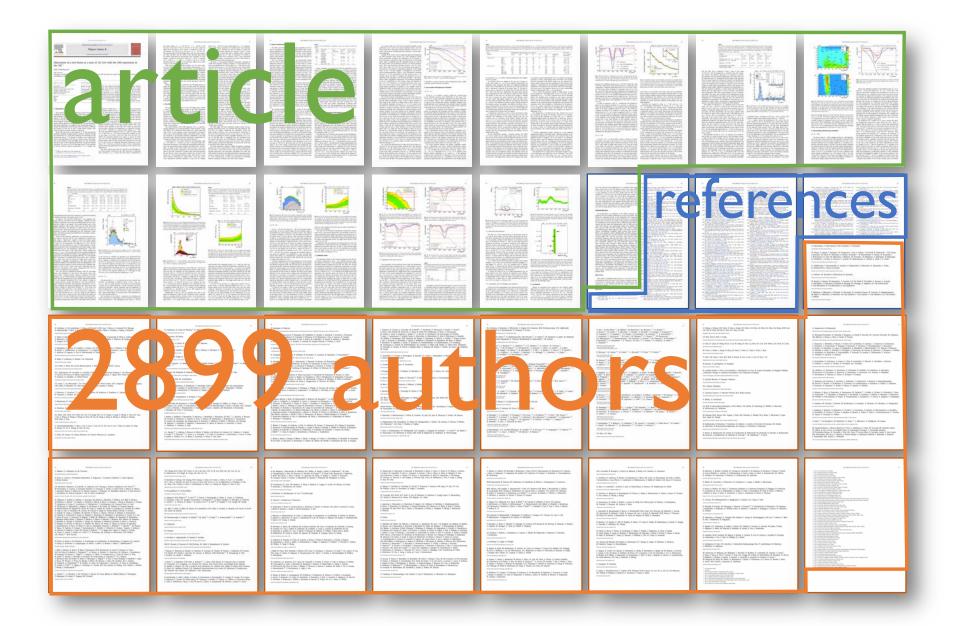
Keywords: CMS Physics Higgs Results are presented from searches for the standard model Higgs boson in proton–proton collisions at $\sqrt{s} = 7$ and 8 TeV in the Compact Muon Solenoid experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.1 fb⁻¹ at 7 TeV and 5.3 fb⁻¹ at 8 TeV. The search is performed in five decay modes: $\gamma\gamma$, ZZ, W⁺W⁻, $\tau^+\tau^-$, and bb. An excess of events is observed above the expected background, with a local significance of 5.0 standard deviations, at a mass near 125 GeV, signalling the production of a new particle. The expected significant in the two decay modes with the best mass resolution, $\gamma\gamma$ and ZZ; a fit to these signals gives a mass of 125.3 ± 0.4(stat.) ± 0.5(syst.) GeV. The decay to two photons indicates that the new particle is a boson with spin different from one.

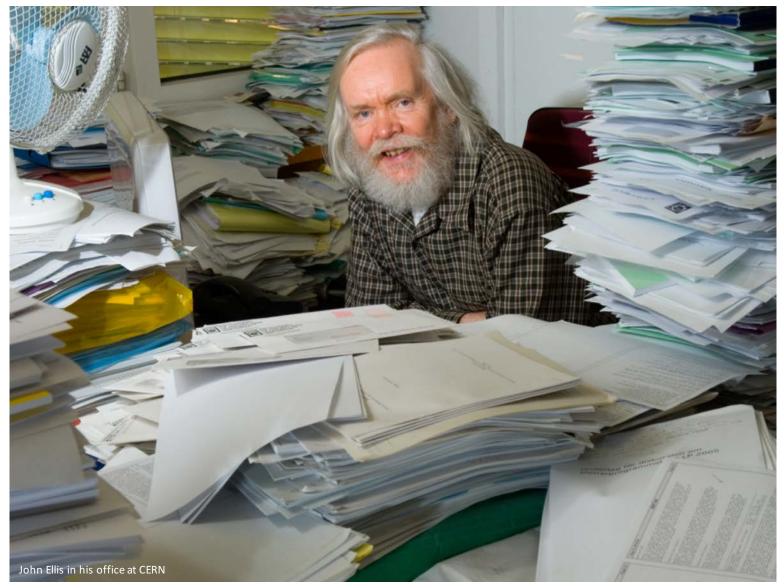
© 2012 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

The standard model (SM) of elementary particles provides a remarkably accurate description of results from many accelerator and non-accelerator based experiments. The SM comprises quarks and leptons as the building blocks of matter, and describes their interactions through the exchange of force carriers: the photon for electromagnetic interactions, the W and Z bosons for weak interactions, and the gluons for strong interactions. The electromagnetic and weak interactions are unified in the electroweak theory. Although the predictions of the SM have been extensively confirmed, the question of how the W and Z gauge bosons acquire mass whilst the photon remains massless is still open.

Nearly fifty years ago it was proposed [1–6] that spontaneous symmetry breaking in gauge theories could be achieved through the introduction of a scalar field. Applying this mechanism to the electroweak theory [7–9] through a complex scalar doublet field leads to the generation of the W and Z masses, and to the prediction of the existence of the SM Higgs boson (H). The scalar field also gives mass to the fundamental fermions through the Yukawa interaction. The mass $m_{\rm H}$ of the SM Higgs boson is not predicted by theory. However, general considerations [10–13] suggest that $m_{\rm H}$ should be smaller than ~1 TeV, while precision electroweak measurements imply that $m_{\rm H} < 152$ GeV at 95% confidence level (CL) [14]. Over the past twenty years, direct searches for the Higgs boson have been carried out at the LEP collider, leading to a lower bound of $m_{\rm H} > 114.4$ GeV at 95% CL [15], and at the Tevatron proton–antiproton collider, excluding the mass range 162–166 GeV at 95% CL [16] and detecting an excess of events, recently reported in [17–19], in the range 120–135 GeV.


The discovery or exclusion of the SM Higgs boson is one of the primary scientific goals of the Large Hadron Collider (LHC) [20]. Previous direct searches at the LHC were based on data from proton-proton collisions corresponding to an integrated luminosity of 5 h⁻¹ collected at a centre-of-mass energy $\sqrt{s} = 7$ TeV. The CMS experiment excluded at 95% CL a range of masses from 127 to 600 GeV [21]. The ATLAS experiment excluded at 95% CL the ranges 111.4–116.6, 119.4–122.1 and 129.2–541 GeV [22]. Within the remaining allowed mass region, an excess of events near 125 GeV was reported by both experiments. In 2012 the proton-proton centre-of-mass energy was increased to 8 TeV and by the end of June an additional integrated luminosity of more than 5 fb⁻¹ had been recorded by each of these experiments, thereby enhancing significantly the sensitivity of the search for the Higgs boson.


This Letter reports the results of a search for the SM Higgs boson using samples collected by the CMS experiment, comprising data recorded at $\sqrt{s} = 7$ and 8 TeV. The search is performed in

^{* ©} CERN for the benefit of the CMS Collaboration.

^{*} E-mail address: cms-publication-committee-chair@cern.ch.

^{0370-2693/ © 2012} CERN. Published by Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.physletb.2012.08.021

- High-Energy Physics ~7'500 papers/year
- 90% written by 1 to 5 authors
- Only 2% of overall publications from CERN

CERN starts the Proton Synchrotron

JFK is President of the U.S.A.

Woodstock Festival

Once upon a time, when air-mail was fast...

....HEP scientists wrote papers...

...then mailed them to journals AND colleagues...

...libraries catalogued these PREPRINTS...

RAT

RASSAN

NT-SK-TI

MASSACHUSSETTS INST

TECHNOLOGY, CAMBRIDGE,

AND AND IN A TRANSPORT OF THE AND A DECEMBER OF THE AND A DECEMBER

A North of Long Strategies and a strategies of the strategies of t

Friendling and the second states of the second stat

... into Open Access repositories.

The fall of the Berlin wall

Boy bands come up

The web is born!

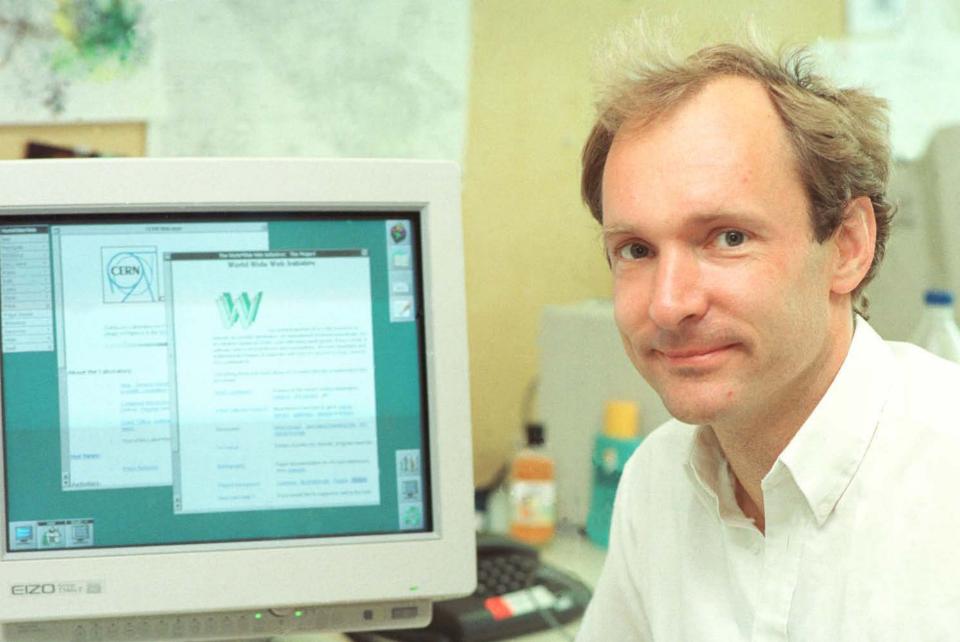
The World Wide Web project

WORLD WIDE WEB

The HorldHideHeb (H3) is a wide-area hypermedia(1) information retrieval initialive aiming to give universal access to a large universe of documents.

Everything there is online about W3 is linked directly or indirectly to this document, including an executive summary[2] of the project, Mailing lists[3], Policy[4], November's W3 news[5], Frequently Rsked Questions[6].

What's out there?[7]Pointers to the world's online information, subjects(8) , W3 servers(9), etc.


Help[10]	on the browser you are using
	R list of W3 project components and their curre
	state. (e.g. Line Mode[12] ,X11 Viola[13] , NeXTSlep[14] , Servers[15] , Tools[16] , Hail robot[17] , Library[18])

Details of protocols, formats, program internals

Technical[19

ref.number), Back, (RETURN) for more, or Help:

http://info.cern.ch

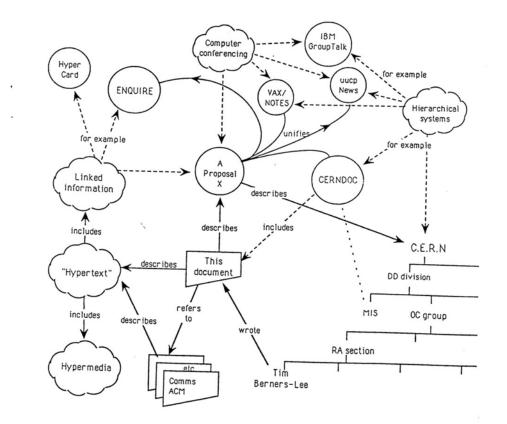
T. Berners-Lee, 1989 at CERN: the web is born

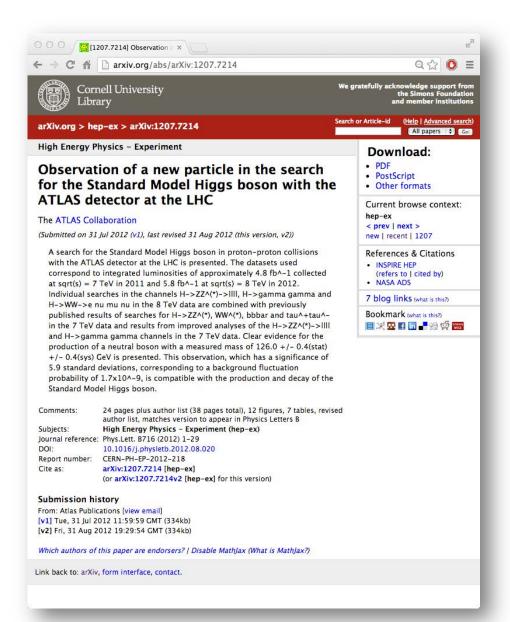
Vague but exciting ...

CERN DD/OC

Tim Berners-Lee, CERN/DD

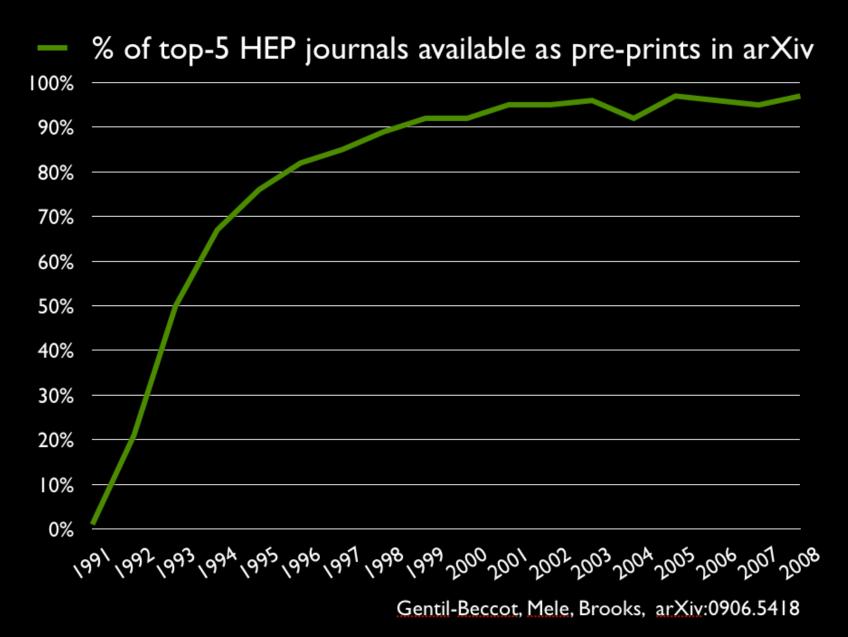
Information Management: A Proposal


March 1989


Information Management: A Proposal

Abstract

This proposal concerns the management of general information about accelerators and experiments at CERN. It discusses the problems of loss of information about complex evolving systems and derives a solution based on a distributed hypertext system.


Keywords: Hypertext, Computer conferencing, Document retrieval, Information management, Project control

arXiv.org: first Open Access repository on the web

97% of HEP journals' content is in arXiv

THILOSOTHICAL TRANSACTIONS: GIVING SOME ACCOMPT OF THE PRESENT Undertakings, Studies, and Labours OF THE INGENIOUS

IN MANY CONSIDERABLE PARTS OFTHE WORLD

> Vol I. For Anno 1665, and 1666.

In the SAVOY, Printed by T. N. for John Martyn at the Bell, a little with-out Temple-Bar, and Fames Alleftry in Duck-Lase,' Printers to the Royal Society.

Which authors of this paper are endorsers? | Disable Mathlax (What is Mathlax?)

Link back to: arXiv, form interface, contact.

Physics Letters B 716 (2012) 1-29 Contents lists available at SciVerse ScienceOirect Physics Letters B www.elsevier.com/locate/physletb Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC *

ATLAS Collaboration*

This paper is dedicated to the memory of our ATLAS colleagues who did not live to see the full impact and significance of their contributions to the experiment.

ARTICLE INFO	ABSTRACT
Arkike Manaye Rocched 31 July 2012 Rocched 11 July 2012 Rocched Group 2012 Available online 14 August 2012 Available online 14 August 2012 Ealtac: W-D. Schlutter	A sector for the Standard Model Higgs boson in presmo-promo collisions with the ATLA detector in the UK is presented. The datasets to correspond to integrate luminosities of approximately 4.8 m ⁻¹ collected at $\sqrt{1-7}$ TeV in 2011 and 5.8 m ⁻¹ at $\sqrt{1-8}$ TeV in 2012. Individual nearches in the channel of the Collected at $\sqrt{1-7}$ TeV in 2011 and 5.8 m ⁻¹ at $\sqrt{1-8}$ TeV in 2012. Individual nearches in the channel of the Collected at $\sqrt{1-6}$ TeV in 2012 and the Collected at $\sqrt{1-6}$ TeV in 2014 at $\sqrt{1-6}$
	© 2012 CERN, Published by Elsevier B.V. All rights reserved

1. Introduction

The Standard Model (SM) of particle physics [1-4] has been sted by many experiments over the last four decades and has tested by many experiments over the last four decades and has been shown to successfully describe high energy particle interactions. However, the mechanism that breaks electroweak symmetry n the SM has not been verified experimentally. This mechanism [5-10], which gives mass to massive elementary particles, implies the existence of a scalar particle, the SM Higgs boson. The search for the Higgs boson, the only elementary particle in the SM that has not yet been observed, is one of the highlights of the Large Hadron Collider [11] (LHC) physics programme. Indirect limits on the SM Higgs boson mass of $m_{H} < 158$ GeV

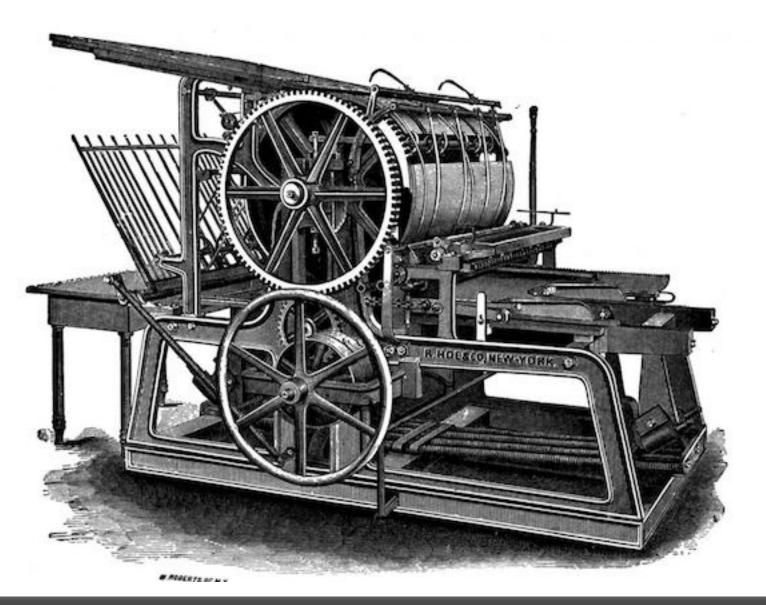
at 95% confidence level (CL) have been set using global fits to preat took compagence serves (LL) have been set using global rms to pre-cision electroweak results [12]. Direct searches at LEP [13], the Tevatron [14–16] and the LHC [17,18] have previously excluded, at 95% CL a. SM Higgs boson with mass below 600 GeV, apart from some mass regions between 115 GeV and 127 GeV. Both the ATLAS and CMS Collaborations reported excesses of

events in their 2011 datasets of proton-proton (pp) collisions at centre-of-mass energy $\sqrt{s} = 7$ TeV at the LHC, which were compatble with SM Higgs boson production and decay in the mass region 124-126 GeV, with significances of 2.9 and 3.1 standard deviations), respectively [17,18]. The CDF and DØ experiments at the Teva-in have also recently reported a broad excess in the mass region

" © CERN for the benefit of the ATLAS Collaboration.

0970-2693/ © 2012 CERN. Published by Elsevier R.V. All rights reserved.

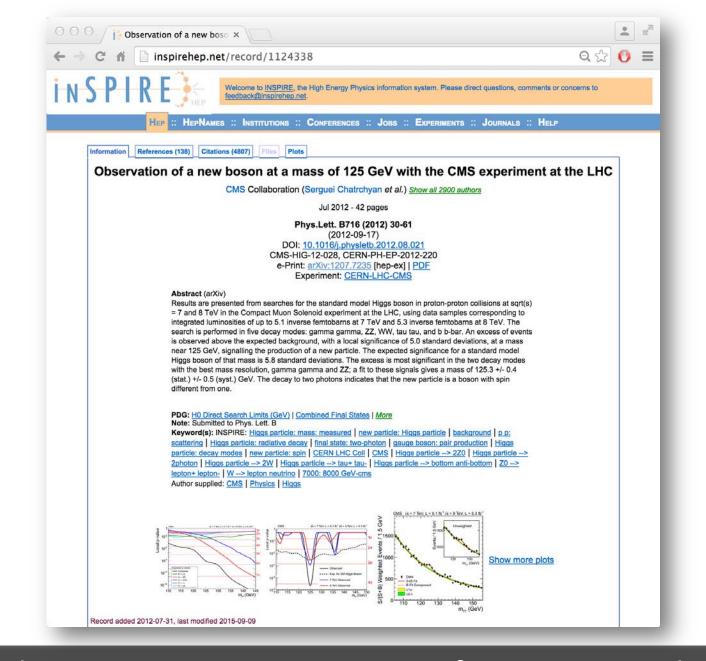
120–135 GeV; using the existing LHC constraints, the observed local significances for $m_H=125$ GeV are 2.7 σ for CDF [14], 1.1 σ for DØ [15] and 2.8 σ for their combination [16]. The previous ATLAS searches in 4.6-4.8 fb⁻¹ of data at \sqrt{s} =

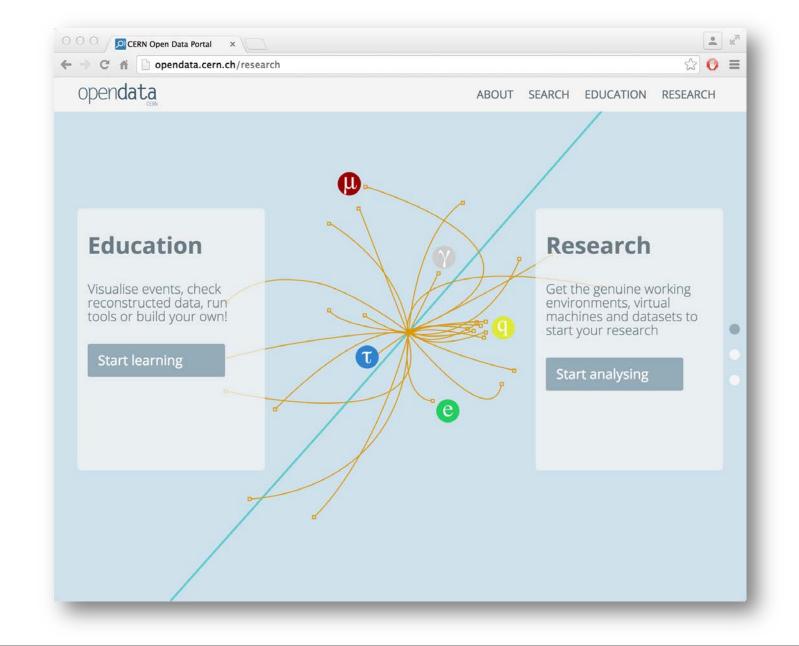

The previous ALLAS sections in 4.6-4.5 is ⁻¹ of data at $\sqrt{s} = 7$ TeV are combined here with new searches for $H \rightarrow ZZ^{(n)} \rightarrow 4U_{c}^{-1}$ $H \rightarrow \gamma\gamma$ and $H \rightarrow WW^{(n)} \rightarrow ev\mu\nu$ in the 5.8-5.9 fb⁻¹ of pp collision data taken at $\sqrt{s} = 8$ TeV between April and June 2012.

usion one cases at $x_2 = 6$ fev proven spin and jone 2012. The data were recorded with instantaneous luminosities up to 6.8×10^{33} cm⁻² c⁻¹; they are therefore affected by multiple pp collisions occurring in the same or neighbouring bunch crossings [pile-up]. In the 7 TeV data, the average number of interactions per (plic-typ) in the 7 lev data, the average number of interactions per bunch crossing was approximately 10, the average increased to approximately 20 in the 8 TeV data. The reconstruction, identification and isolation criteria used for electrons and photons in the 8 TeV data are improved, making the $H \rightarrow ZZ^{(0)} \rightarrow 44$ and $H \rightarrow \gamma\gamma$ searches more robust against the increased pile-up. These analyses were re-optimised with simulation and frozen before looking set were re-optimised with simulation and roten before journs at the 8 TeV data. In the $H \rightarrow WW^{(n)} \rightarrow \ell_V \ell_V$ channel, the increased pile-up de-

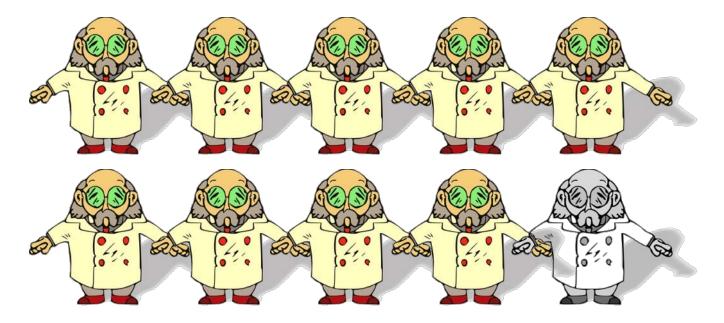
teriorates the event missing transverse momentum, Etrins, resoluteriorates the event missing transverse momentum, E^{rr}₁, resolution, which results in significantly larger Dell-Xan background in the same-flavour final states. Since the e_{μ} channel provides most of the search, only this final state is used in the analysis of the 8 TeV data. The kinematic region in which a SM Hirzs boson with a mass between 110 GeV and 140 GeV in

⁴ The symbol *t* stands for electron or muon


Disintermediation of distribution and "publication" (peer-review)


Community infrastructures for disseminating discoveries in physics

arXiv.org: submission/dissemination – first repository


inspirehep.net: A&I service – first DB on the web

opendata.cern.ch – moving beyond publications

Do High-Energy Physicists "read" journals ?

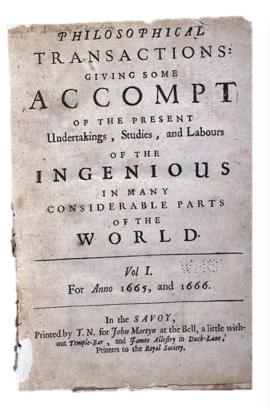
9 HEP scientists in 10...

...use arXiv also when a journal version exists!

Gentil-Beccot, Mele, Brooks arXiv: 0906.5418

The role of journals today

lander of


Quality Assurance & Peer Review

The role of journals today

Interface with Officialdom

© Malkalior under CC-BY-SA 3.0

Dissemination on arXiv.org; Peer-review on journals

Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC *

ATLAS Collaboration*

This paper is dedicated to the memory of our ATLAS colleagues who did not live to see the full impact and significance of their contributions to the experiment.

ARTICLE INFO	ABSTRACT
Article history: Received 31 July 2012 Received in sevised form 8 August 2012 Accepted 11 August 2012 Available online 14 August 2012 Editor: WD. Schlatter	A search for the Stat the UIC is presented, collected at $\sqrt{s} = 7$ Ti $H \rightarrow ZZ^{(n)} \rightarrow 4d$, H published results of a improved analyses of the preduction of a m

A search for the Standard Model Higgs home in present-proton collisions with the ATAA detectura is the UK is presented. The datasets and correspond to integrated numberistics of approximately 4.8 h⁻¹ collected a $\sqrt{i} = 71^{-1}$ keV is 2011. In this data state of the other provided presented in the 22⁻¹ state (1 + 1 + y y and 1 + - 290⁻¹ state) = 74^{-1} keV is 2012. Individual statehes in the channel is 22⁻¹ state (1 + y y y and 1 + - 290⁻¹ state) = 74^{-1} keV is 2014. The state state of the state state

© 2012 CERN. Published by Elsevier B.V. All rights reserved

1. Introduction

The Standard Model (SM) of particle physics |-1|- has been trend by many experiments over the tast four decades and has been shown to successfully describe high energy particle interactions. However, the mechanism that thereaks electrowerk signmentry ||5-10|, which gives mass to maxive elementary particle, implies the existence of a scalar particle, the Nigas boost, the shift elementary particle, in the SM than any elementory control with sign and the methods of the Large boost, the shift elementary particle, in the SM than any elementory particle, in the SM that may elementory be included as the highlights of the Large boost, the shift elementary particle in the SM that may experiment the particle shift of the Large boost, the shift elementary particle in the SM that may element the particle shift of the Large boost, the shift elementary particle in the SM that may element the particle shift of the Large boost, the shift elementary particle in the SM that may be a simulated as the particle shift of the Large boost, the shift elementary particle in the SM that may elementary be a simulated as the particle shift of the Large boost, the shift elementary particle in the SM that may be a simulated as the particle shift of the Large boost, the shift elementary barries are shift entire shift of the Large boost, the shift elementary barries are shift entire shift elementary barries are shift entire sh

Las has yet when to coverve, is take on the magnaphics on the large function of the magnation of the magnaphic of the magnaphic function of the magnaphic of the magnaphic of the magnaphic at 95% confidence level (20) have here set using global first to precision electroweak results (12). Directs searches at 129 (13), the Tevatmon [14–16] and the Lici (17,18] have previously excluded, at 95% CL a 5M Higgs boom with mass below 500 ceV, apart from some mass regions between 116 GeV and 127 CeV. Both the ATLS and CMS Collaborations reported excesses of

Both the ATLAS and CMS Collaborations reported excesses of events in their 2011 datasets of porton–protein (pp) collisions at centre-of-mass energy $\sqrt{s} = 7$ TeV at the LHC, which were compatlible with SM Higgs boson production and decay in the mass region 124–125 GeV, whit significances 0.2 g and 131 standard deviations (σ), respectively [17,18]. The CDF and DØ experiments at the Tevatron have also recently remoted a broad excess in the mass region

¹⁰ O CENN for the benefit of the ATLAS Collaboration.
² 8-mail address atlas publication/Retrack.
0570-0583/ © 2012 CENN, Published by Elsevier B.V. All rights reserved. https://dx.doi.org/10.1016/j.jtpsetech.2012.06.020 120–135 GeV; using the existing USC constraints, the observed local significances for $m_{H^+}=125$ GeV are 2.7 σ for CDP [14], 11 σ for DØ [15] and 2.8 σ for their combination [16]. The previous ATLAS searches in 4.6–4.8 m^{-1} of data at $\sqrt{s}=$

The previous ATLAS searches in 4.6–4.8 m⁻¹ of data at $\sqrt{s} = 7$ TeV are combined here with new searches for $H \rightarrow ZZ^{(n)} \rightarrow 4L^3$ $H \rightarrow \gamma\gamma$ and $H \rightarrow WW^{(n)} \rightarrow e_{12}w$ in the 5.8–5.9 m⁻¹ of pp collision data taken at $\sqrt{s} = 8$ TeV between April and June 2012.

The data were recorded with instantaneous huminosities up to 68×10¹⁰ cm⁻²; "by are therefore affected by multiple pp collisions occurring in the same or neighbouring bunch consinguing (heap). In the 74 data, the average number of instantaneous per pressmerge 20 in the 8 TeV data, The reconstruction, identification in isolation criteria used for electrons and photons in the 8 TeV data are straight by the 24 and H \rightarrow yprescrites provide against the instantaneous plane photon provides the 10 sectors and photons in the 8 TeV data are improved, making the H \rightarrow ZZ²¹ \rightarrow 4 and H \rightarrow yprescrites more robust against the increased plane, these analytem to 25 sectors more robust against the increased plane photon in the 8 TeV data are there increase plane photon.

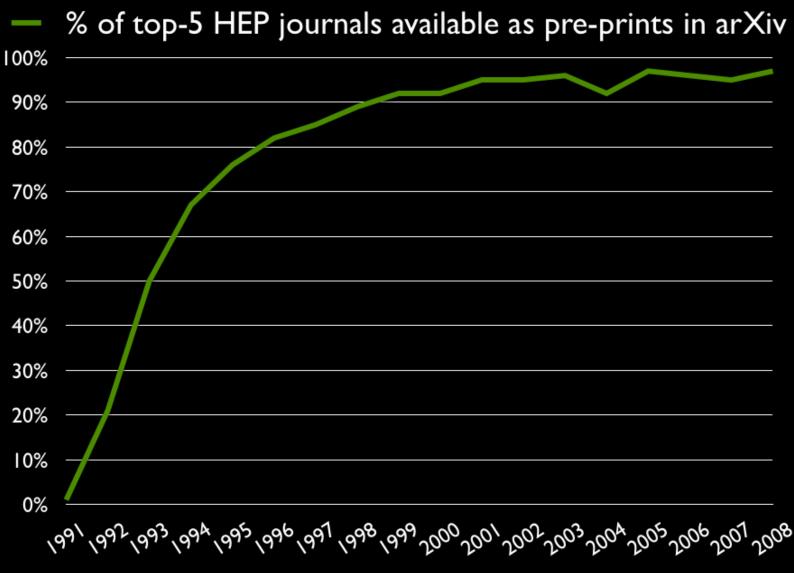
In the $H \rightarrow WW^{(0)} \rightarrow \langle x / x \rangle$ channel, the increased pile-up deteriorates the event mixing transverse momentum $E_1^{(0)}$, results tion, which results in significantly larger Drell-Yan background in the same-lawour fluid states. Since the equ channel provides most of the sensitivity of the search only this final laste is used in the analysis of the 8 TeV data. The kinematic region in which a SM Higgs boom with a mass between 110 GeV and 140 GeV and 140 GeV

 $^{-1}$ The symbol ℓ stands for electron or muon.

Peer-review and publishing services paid through purchase of content (mostly free on arXiv.org)

CERN principle of Openness (1953): "the results of its experimental and theoretical work shall be published or otherwise made generally available"

Part of CERN mission (1953): "[...] sponsoring of international co-operation in nuclear research, including co-operation outside the Laboratories [which] may include in particular [...] the dissemination of information"

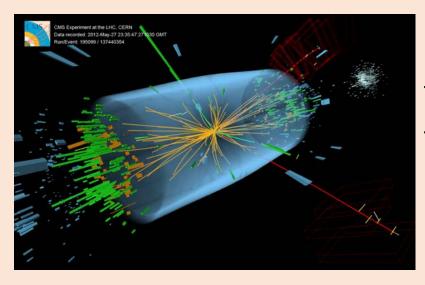

Re-use subscription money...

68 1 1×26

...and liaise with Funding Agencies...

... to pay peer-review & publishing services...

Gentil-Beccot, Mele, Brooks, arXiv:0906.5418

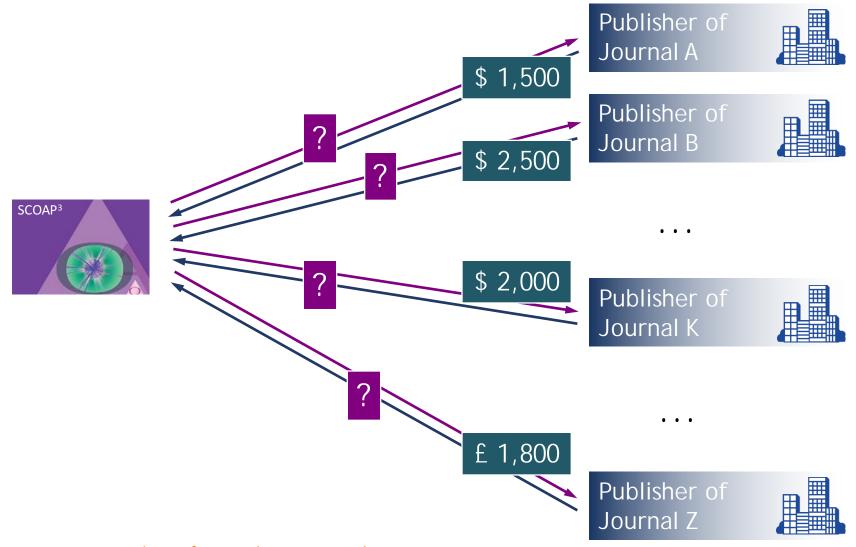

...and not for content!

Olympic Games in London

© UK Government's Department for Culture, Media and Sport under CC BY 2.0 License

CERN announces the discovery of the Higgs Boson

The Encyclopædia Britannica discontinues its print edition



© Joi Ito via Flickr under CC BY 2.0 License

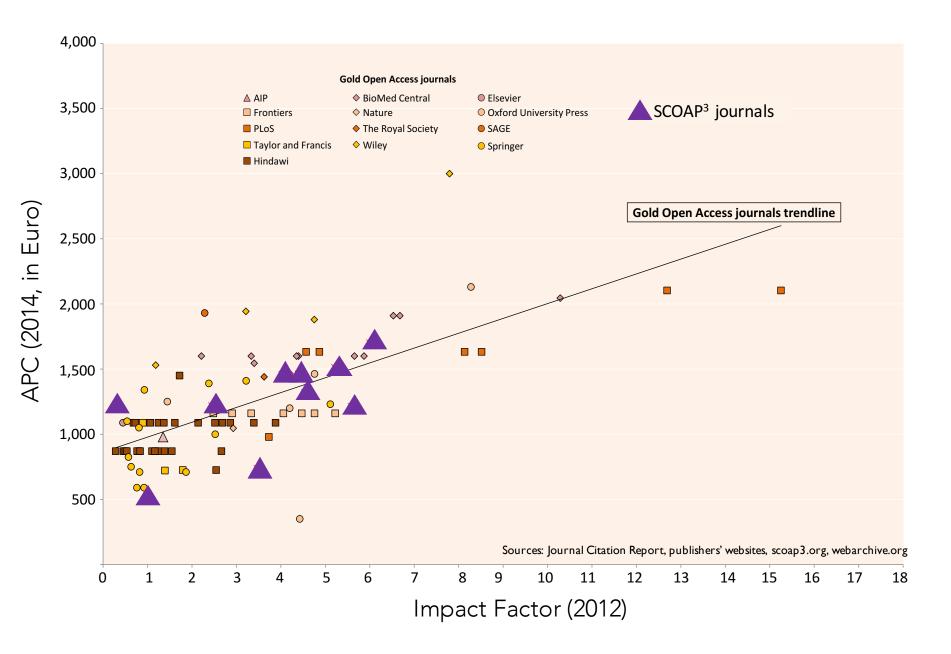
CERN Procurement for the benefit of SCOAP³

The SCOAP³ Tender Process...

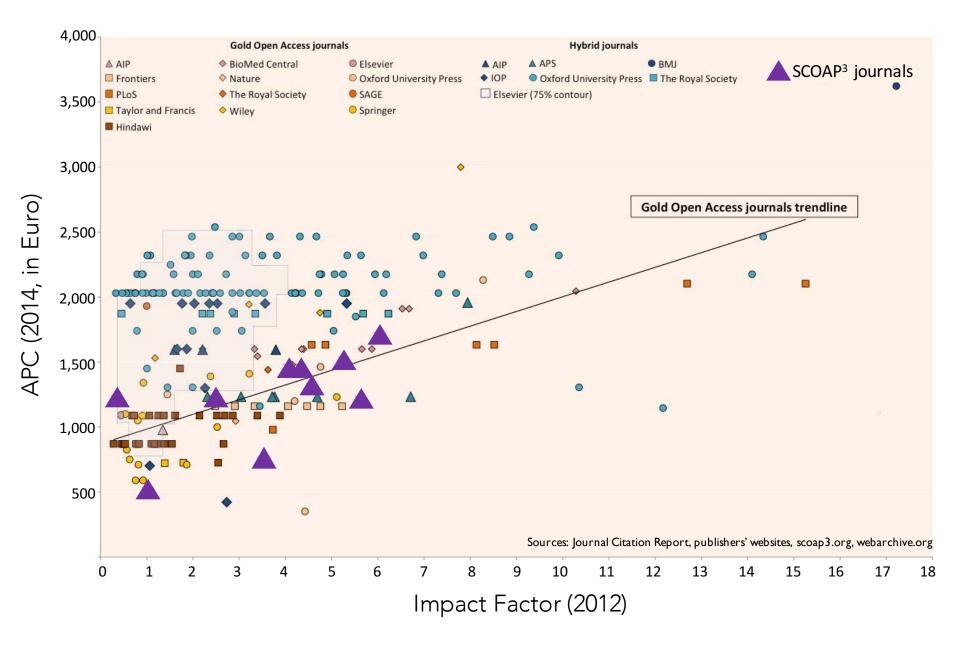
Fictive numbers for explanation only!

...determined the best value for money...

Fictive numbers for explanation only!


...within an available budget envelope.

	Journal	Price	Volume	Contract	Expenditure		
ce.	Journal K	\$ 2,000	1,100	\$ 2.2mn	€ 1.8mn		
w) pri	Journal A	\$ 1,500	2,000	\$ 3.0mn	€ 4.2mn		
d (lo	Journal Z	£ 1,800	800	£ 1.4mn	€ 5.9mn		
ty an	Journal F	€ 4,000	300	€ 1.2mn	€ 7.1mn		
quali	Journal L	€ 2,000	700	€ 1.4mn	€ 8.5mn		
igh) (Journal R	€ 1,800	650	€ 1.2mn	€ 9.7mn		
hy (h	Journal Q	£3,000	90	£ 0.3mn	€ 10.0mn		
Ranked by (high) quality and (low) price	Journal P	\$ 800	120		Contract € XX		
Rar	Journal W	£5,000	100	#	pc's: € XX arcticles: XX ormat: PDF XML		
	•••	•••	• • •		icense: CC BY		
Fict	Fictive numbers for explanation only!						


Publisher	Journal	APC
	Nuclear Physics B	\$ 2'000
ELSEVIER	Physics Letters B	\$ 1'800
0 Hindawi	Advances in High Energy Physics	\$ 1'000
8	Chinese Physics C	£ 1′000
Publishing	Journal of Cosmology & Astroparticle Physics	£ 1′400
	New Journal of Physics	£ 1′200
JAGIELLONIAN UNIVERSITY IN KRAKOW	Acta Physica Polonica B	€ 500
OXFORD UNIVERSITY PRESS	Progress of Theoretical and Experimental Physics	£ 1′000
Springer	European Physical Journal C	€ 1′500
	Journal of High Energy Physics	€ 1′200

Average effective APC 2014: € 1'042

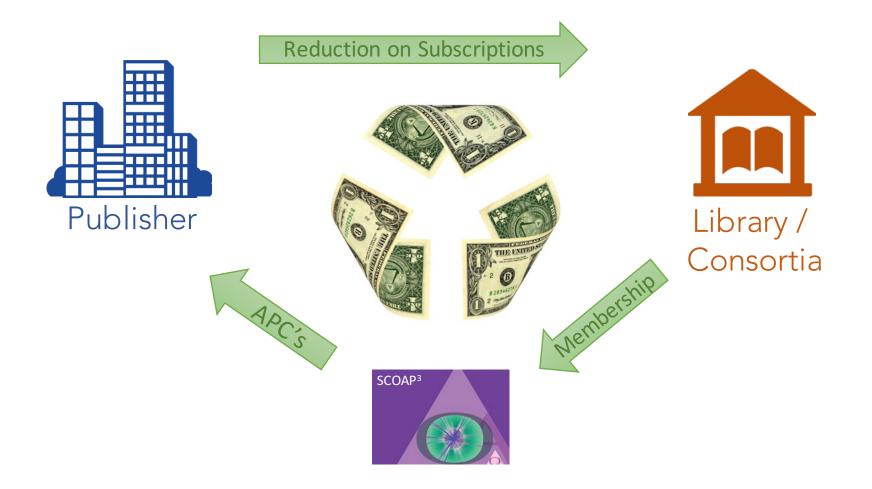
(SCOAP³ pays maximum = 2011 #articles, rest free)

C. Romeu et al. (2014) The SCOAP3 initiative and the Open Access - Article-Processing-Charge market: global partnership and competition improve value in the dissemination of science DOI: 10.2314/CERN/C26P.W9DT

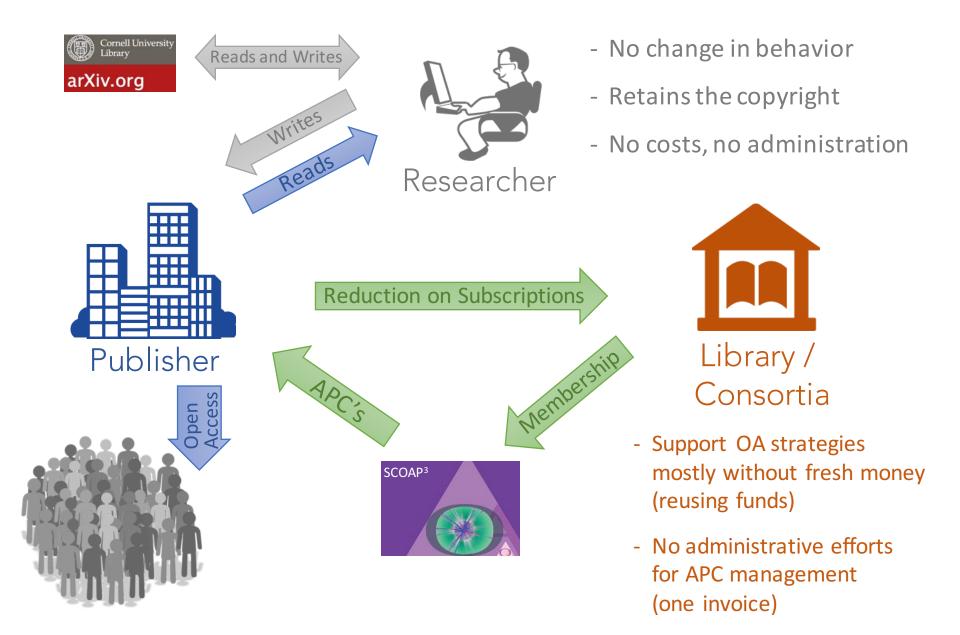
C. Romeu et al. (2014) The SCOAP3 initiative and the Open Access - Article-Processing-Charge market: global partnership and competition improve value in the dissemination of science DOI: 10.2314/CERN/C26P.W9DT

Germany wins the soccer world cup

© Agência Brasil under CC BY 3.0 Brazil License

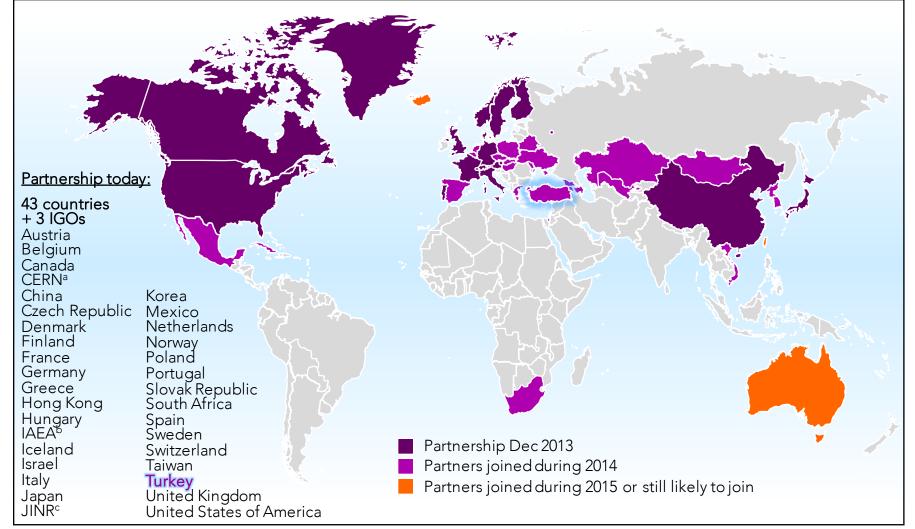

© DLR German Aerospace Center under CC BY 3.0

Philae lands on a comet


Start of SCOAP³

The SCOAP³ Business Model

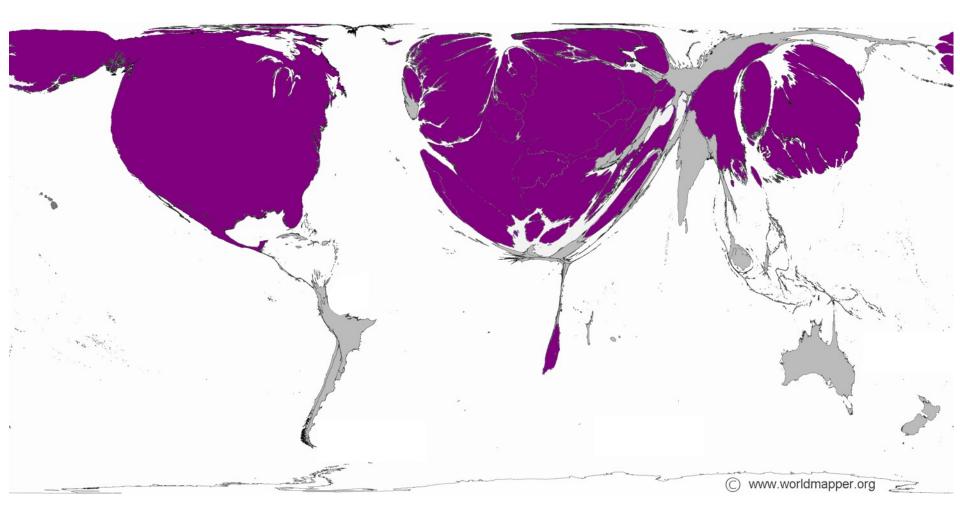
The SCOAP³ Business Model



Keep scientists happy !

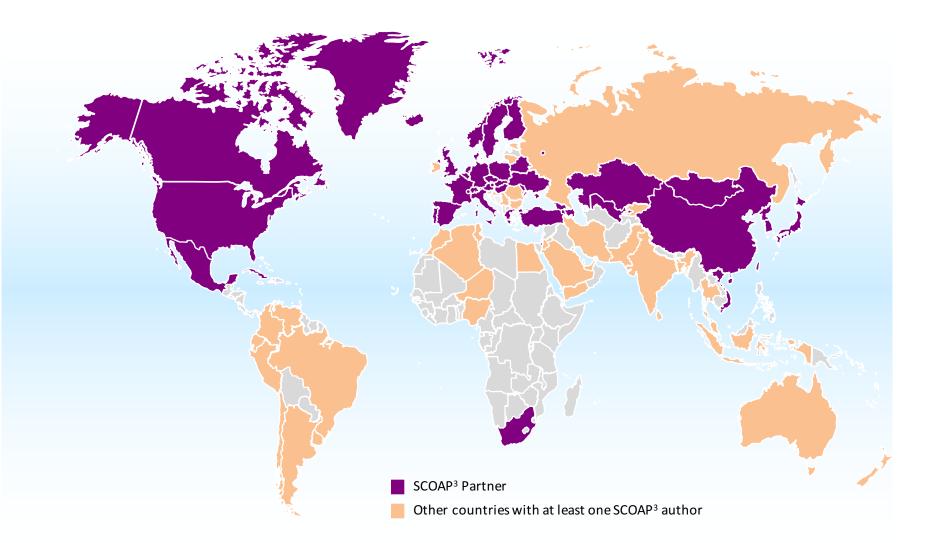
46 countries and IGOs - and still growing...

~3,000 libraries, funding agencies and research institutions

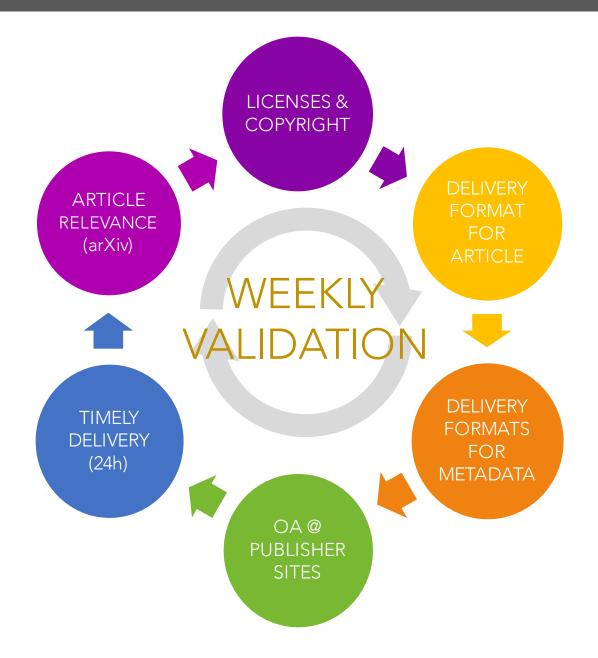


a) European Organization for Nuclear Research, Geneva

b) International Atomic Energy Agency, Vienna


c) Joint Institute for Nuclear Research, Dubna representing 12 of its member states

Research intensive countries and SCOAP³


Territory size shows the proportion of all scientific papers published in 2001 written by authors living there http://www.worldmapper.org/display.php?selected=205

Publis	her	Journal	articles
ELSEVIER		Nuclear Physics B	615
		Physics Letters B	
🕥 Hina	dawi	Advances in High Energy Physics	318
		Chinese Physics C	44
IOP Publishing		Journal of Cosmology & Astroparticle Physics	403
	Φ DPG	New Journal of Physics	15
JAGIELLONIAN IN KRAKOW	UNIVERSITY	Acta Physica Polonica B	33
OXFORD UNIVERSITY PRESS	<u>JP</u> Š	Progress of Theoretical & Experimental Physics	139
Springer	er 🐼	European Physical Journal C	1′014
8		Journal of High Energy Physics	3′723
		Articles as of October 15 th 2015:	7′932
		incl. articles with at least one Turkish author:	413

18'000 authors from 90 countries

Article Compliance

99.98%

Article compliance is not a given

welcometrust

The Reckoning: An Analysis of Wellcome **Trust Open Access Spend 2013-14**

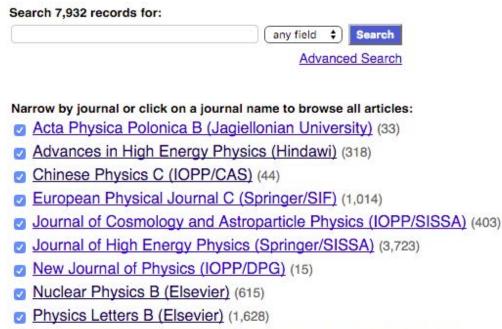
3 MAR, 2015

by Wellcome Trust

tags: Data, Journals, Open Access, Open data, policy, Publishing, Robert

	2013-14
Number of articles for which an APC was paid	2556
Total spend on APCs	£4.694.428
Average APC	£1837
Median APC	£1800

Kiley


CC-BY and Europe PMC deposit: compliance Analysis of articles not available in Europe PMC

Basic compliance	Number	%	Analysis	Number	Percentage
Articles for which an APC has been paid	2556	100%	Total Number of articles not in Europe PMC	335	100
Number of these articles available via Europe PMC as full text (as of 1 st February 2015)	2221	87%	Duplicate articles identified in the dataset supplied by Institutions	3	<1%
Number of these articles NOT available as full text in Europe PMC	335	13%	Total number of articles which could be found (via Google and a DOI/title search) but are not in Europe PMC	325	97%
Licence compliance Number of articles with a CC-BY (or CC-0) licence:	1679	66%	Of these 225 senses we sould find		
Number of articles with a CC-DT (of CC-0) icence.	10/3	00%	Of those 325 papers we could find: OA on the publisher site	308	95%
Number of articles with other licence (or no licence)	877	34%	OA on the publisher site	308	93%
Full compliance			Not OA on the publisher site	17	5%
Total number of papers with full text in Europe PMC, and CC-BY	1565	61%	Of those 308 papers which are OA on the publisher site:		
licence	$ \top$		Early View/Ahead of Print	71	23%
13% of articles			Final published version	237	77%
not in repository Only 66% with CC-BY		On c	y 61% fully ompliant	/	

Publis	her	Journal	articles
ELSEVIER		Nuclear Physics B	615
		Physics Letters B	
🕥 Hina	dawi	Advances in High Energy Physics	318
		Chinese Physics C	44
IOP Publishing		Journal of Cosmology & Astroparticle Physics	403
	Φ DPG	New Journal of Physics	15
JAGIELLONIAN IN KRAKOW	UNIVERSITY	Acta Physica Polonica B	33
OXFORD UNIVERSITY PRESS	<u>JP</u> Š	Progress of Theoretical & Experimental Physics	139
Springer	er 🐼	European Physical Journal C	1′014
8		Journal of High Energy Physics	3′723
		Articles as of October 15 th 2015:	7′932
		incl. articles with at least one Turkish author:	413

SCOAP3 Repository ×	
$\leftarrow \Rightarrow$ C f [] repo.scoap3.org	
SCOAP ³ REPOSITORY	

HOME :: SCOAP³ :: HELP :: ABOUT :: IDEA BOARD

Progress of Theoretical and Experimental Physics (OUP/JPS) (139)

Welcome to the SCOAP³ repository.

23

Here you can freely search, browse and of course download all Open Access articles sponsored by the international SCOAP³ initiative.

In the coming months, and as more articles become available, we will make available tailored feeds of metadata and articles. We will also provide SCOAP³ participating libraries API access.

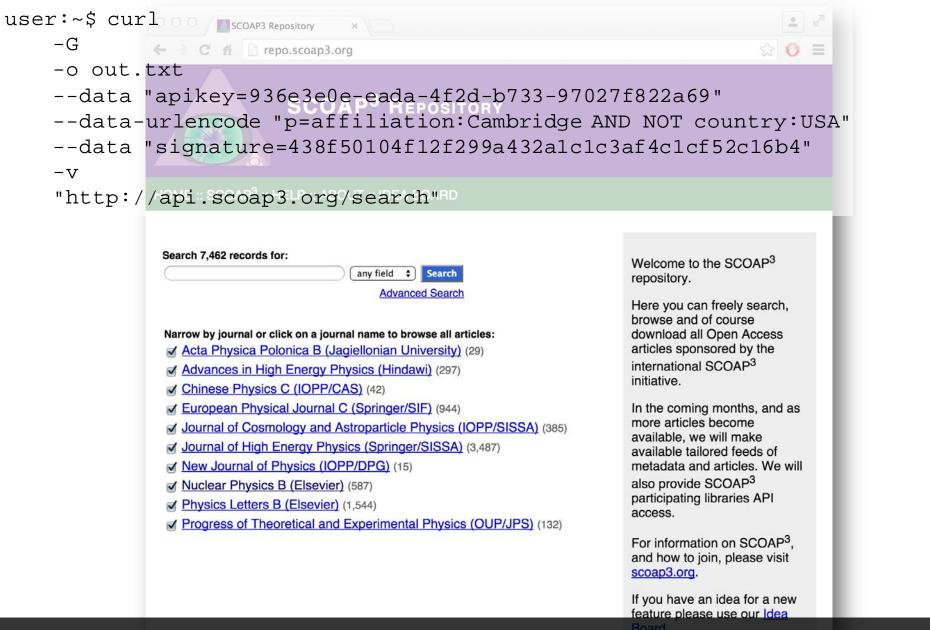
The SCOAP³ Repository

ORCID in SCOAP³

"ORCIDS have to be sent to SCOAP³ when they are available" Tender Specification

SCOAP ³ R	EPOSITORY (BETA)	
HOME :: SCOAP ³ :: HELP :: ABOUT		
Home > Advances in High Energy Physics (Hindaw) > Probing the Top	Quark Flavour-Changing Neutral Current at a Future Electron-Positron Collider	
Probing the Top Qu	ark Flavour-Changing Neutral Curre Positron Collider	nt at a Future Electron-
(IPM), P.O. Box 19395-5531, Ter Fundamental Sciences (IPM), P. Accelerators, Institute for Resear Mazandaran University of Science (School of Particles and Acceleration)	Iojtaba (School of Particles a Sccelerators, Institute for I rran, Iran) ; <u>Hesari, Hoda</u> [™] (School of Particles and Acc O. Box 19395-5531, Tehran, Iran) ; <u>Khanpour, Hamzeh</u> rch in Fundamental Sciences (IPM), P.O. Box 19395-5531, ⁻ re and Technology, P.O. Box 48518-78413, Behshahr, Iran) ators, Institute for Research in Fundamental Sciences (IPM) si University of Mashhad, P.O. Box 1436, Mashhad, Iran)	cele eners, Institute for Research in () (School of Particles and Tehran, Iran) (Department of Physics, ; <u>Khatiri Yanehsari, Morteza</u>
	03 November 2014	
current (FCNC) to the gluon. To a background events, where one to other top decays through FCNC,	examine the sensitivity of a future e^-e^+ collider to the ano separate signal from background a multivariate analysis is p op quark is considered to follow the dominant standard mod $t \rightarrow qg$, where q is a u - or a c -quark. The analysis of ful dence level limits on the top quark anomalous couplings are grated luminosities.	performed on top quark pair and lel (SM) decay, $t \rightarrow Wb$, and the lly hadronic FCNC decay of the $t t$ pair
Published in: Advances i Published by: Hindawi Publishir	n High Energy Physics 2014 (2014) 476490	
DOI: 10.1155/2014/476490 License: CC-BY-3.0		
Fulltext:	<u>A)</u>	

Already ~7% of articles in the repository have ORCIDs.


SCOAP³ partners advised to promote ORCIDs with their authors, to later easily query the repository.

C A GitHub, Inc.	US] https://github.com/	SCOAP3/scoap3		Q 🏠	•
GitHub This repository S	earch	Explore Features	Enterprise Pricing	Sign up Sign	n in
SCOAP3 / scoap3			• Watch 3	★ Star 2 [%] Fork	(4
Repository for SCOAP3 initiat	ive. Overlay for Invenio So	ftware. https://repo.scoap3.org)		
🕝 367 commits	₽ 2 branches	🛇 0 releases	G contributors	<> Code	
				() Issues	0
Branch: master - SCO	ip3 / +		:=	ື່ໃງ Pull requests	0
Additional error handling for DOI tin	nestamp task				
Dziolas authored 7 days ago		1	atest commit 6df08f4c4a 🔂	-/~ Pulse	
bibcheck_plugins	Fixes function call in chk_ade	d_orcid.check_records	3 months ago	III Graphs	
bibsched_tasklets	Additional error handling for	DOI timestamp task	7 days ago		
compliance_check_configs	rawtext_search: Adds config	urability of search delimiters	a year ago	HTTPS clone URL	
examples	Update readme.txt		8 months ago	https://github.com/!	Ê
format_templates	Changes delimiter for ORCI	D in OIA_DC format	3 months ago	You can clone with HTTPS of Subversion. ③	or
templates	Enables RSS feeds		3 months ago	Clone in Deskto	ор
www	New function to export count	try information with authors affiliations	s 2 months ago	- ← Download ZIP	
.gitignore	Add .gitignore		2 years ago	- Donnoud Ell	

SCOAP3

Repurpose subscriptions; participative; global...

Libraries

...API apps for text-mining; searching affiliations/ORCIDs; push to institutional repositories

Funding Agencies

10287768 A Good value for money; low overheads; co-authorship; global

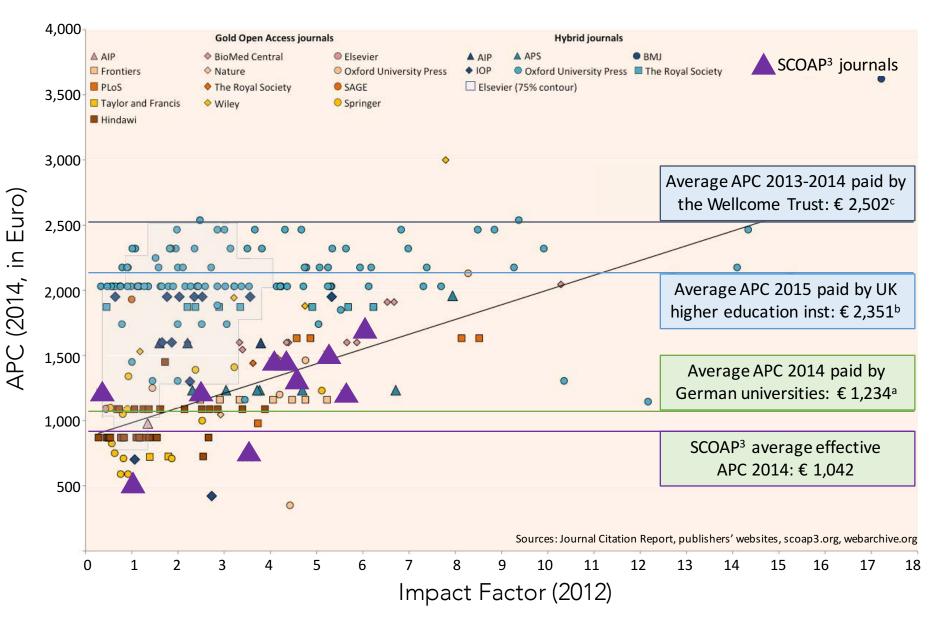


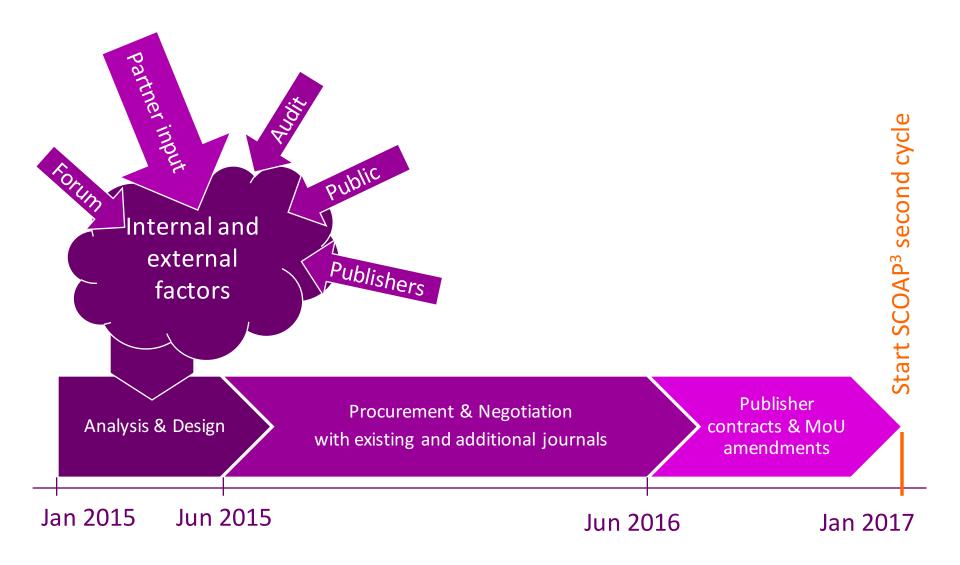
Chart: C. Romeu et al. (2014) The SCOAP3 initiative and the Open Access - Article-Processing-Charge market: global partnership and competition improve value in the dissemination of science DOI: 10.2314/CERN/C26P.W9DT

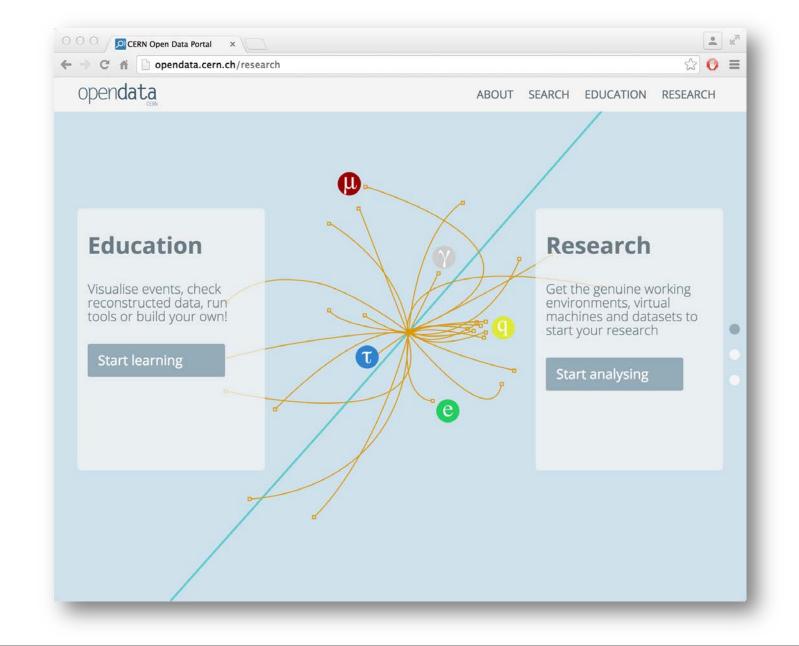
- a) https://github.com/OpenAPC/openapc-de;
- b) http://figshare.com/articles/2015_Jan_June_UK_APC_data_combined/1509860
- http://blog.wellcome.ac.uk/2015/03/03/the-reckoning-an-analysis-of-wellcometrust-open-access-spend-2013-14/

Publishers

on behalf of SCOAP³

Accounting / payments SCOAP³ Repository Governance support Outreach Representation Coordination of partners Legal framework


46 Countries


3'000 Libraries

No costs; no administration; no change

Roadmap for SCOAP³ second cycle

opendata.cern.ch – moving beyond publications

Research

To analyse CMS data, a Virtual Machine with the CMS analysis environment is provided. The data can be accessed directly through the VM. In the primary datasets, no selection nor identification criteria have been applied. For this release, no simulated Monte Carlo datasets are provided. For research purposes, specific software environments and tools need to be deployed to analyse these complex primary data. In addition to the data below, you will find instructions for setting up your working environments here

xplore CMS >

According to the ALICE data preservation strategy, reconstructed data and Monte Carlo data as well as the analysis software and documentation needed to process them will be made available on a time scale of S years (for 10% of the data). Thus, the first release of ALICE research data will happen in 2018.

According to the ATLAS Data Access Policy, reconstructed data and accompanying tools will be released after reasonable embargo periods.

According to the LHCb External Data Access Po and accompanying tools will be released after r

інсь

periods.

Education

The CMS (Compact Muon Solenoid) experiment is one of two large general-purpose detectors built on the Large Hadron Collider (LHC). Its goal is to investigate a wide range of physics such as the characteristics of the Higgs boson, extra dimensions or dark matter. For education purposes, the complex primary data need to be processed into a format (examples below) that is good for simple applications. Get in touch if you wish to build your own applications similar to those shown here

plore CMS >

ALICE (A Large Ion Collider Experiment) is a heavy-ion detector designed to study the physics of strongly interacting matter at extreme energy densities, where a phase of matter called quark-gluon plasma forms. More than 1000 scientists are part of the collaboration.

Explore ALICE


The ATLAS (A Toroidal LHC ApparatuS) experiment is a general purpose detector exploring topics like the properties of the Higgs-like particle, extra dimensions of space, unification of fundamental forces, and evidence for dark matter candidates in the Universe.

Explore ATLAS

The LHCb (Large Hadron Collider beauty) experiment aims to record the decay of particles containing b and anti-b quarks, known as B mesons. The detector is designed to gather information about the identity, trajectory, momentum and energy of each particle.

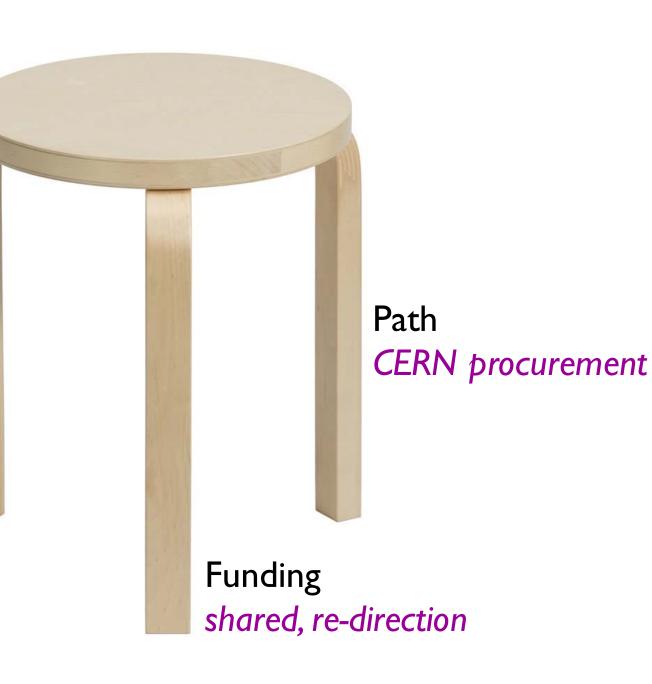
Explore LHCb 2

Learning Resources

CERN Open Data Portal release resulted in:

- New collaborations

- Research
- Re-use of primary datasets for machine learning and "real physics" analysis
- New data "mash-ups"


Start analysing

- Adaption of code examples for new analysis

Evolved from CERN/HEP collaborative model

- Result of a long journey
- Lowest APCs in the market for established high-quality journals
- Reuse of subscription money
- 100% compliance, nimble operation, easy administration for partners
- Based on global consensus building via participative governance
- Supported by Open Science initiatives

